Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Mol Nutr Food Res ; 68(8): e2400063, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38600885

RESUMO

Phenethyl isothiocyanate (PEITC), a compound derived from cruciferous vegetables, has garnered attention for its anticancer properties. This review synthesizes existing research on PEITC, focusing on its mechanisms of action in combatting cancer. PEITC has been found to be effective against various cancer types, such as breast, prostate, lung, colon, and pancreatic cancers. Its anticancer activities are mediated through several mechanisms, including the induction of apoptosis (programmed cell death), inhibition of cell proliferation, suppression of angiogenesis (formation of new blood vessels that feed tumors), and reduction of metastasis (spread of cancer cells to new areas). PEITC targets crucial cellular signaling pathways involved in cancer progression, notably the Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-κB), Protein Kinase B (Akt), and Mitogen-Activated Protein Kinase (MAPK) pathways. These findings suggest PEITC's potential as a therapeutic agent against cancer. However, further research is necessary to determine the optimal dosage, understand its bioavailability, and assess potential side effects. This will be crucial for developing PEITC-based treatments that are both effective and safe for clinical use in cancer therapy.


Assuntos
Isotiocianatos , Neoplasias , Isotiocianatos/farmacologia , Humanos , Neoplasias/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Antineoplásicos/farmacologia , NF-kappa B/metabolismo , Antineoplásicos Fitogênicos/farmacologia
2.
Drug Dev Res ; 85(2): e22175, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38567708

RESUMO

Icaritin is a natural prenylated flavonoid derived from the Chinese herb Epimedium. The compound has shown antitumor effects in various cancers, especially hepatocellular carcinoma (HCC). Icaritin exerts its anticancer activity by modulating multiple signaling pathways, such as IL-6/JAK/STAT3, ER-α36, and NF-κB, affecting the tumor microenvironment and immune system. Several clinical trials have evaluated the safety and efficacy of icaritin in advanced HCC patients with poor prognoses, who are unsuitable for conventional therapies. The results have demonstrated that icaritin can improve survival, delay progression, and produce clinical benefits in these patients, with a favorable safety profile and minimal adverse events. Moreover, icaritin can enhance the antitumor immune response by regulating the function and phenotype of various immune cells, such as CD8+ T cells, MDSCs, neutrophils, and macrophages. These findings suggest that icaritin is a promising candidate for immunotherapy in HCC and other cancers. However, further studies are needed to elucidate the molecular mechanisms and optimal dosing regimens of icaritin and its potential synergistic effects with other agents. Therefore, this comprehensive review of the scientific literature aims to summarize advances in the knowledge of icaritin in preclinical and clinical studies as well as the pharmacokinetic, metabolism, toxicity, and mechanisms action to recognize the main challenge, gaps, and opportunities to develop a medication that cancer patients can use. Thus, our main objective was to clarify the current state of icaritin for use as an anticancer drug.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Linhagem Celular Tumoral , Microambiente Tumoral
3.
J Biol Eng ; 18(1): 12, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38273413

RESUMO

BACKGROUND: Polymeric nanoparticles can be used for wound closure and therapeutic compound delivery, among other biomedical applications. Although there are several nanoparticle obtention methods, it is crucial to know the adequate parameters to achieve better results. Therefore, the objective of this study was to optimize the parameters for the synthesis, purification, and freeze-drying of chitosan nanoparticles. We evaluated the conditions of agitation speed, anion addition time, solution pH, and chitosan and sodium tripolyphosphate concentration. RESULTS: Chitosan nanoparticles presented an average particle size of 172.8 ± 3.937 nm, PDI of 0.166 ± 0.008, and zeta potential of 25.00 ± 0.79 mV, at the concentration of 0.1% sodium tripolyphosphate and chitosan (pH 5.5), with a dripping time of 2 min at 500 rpm. The most representative factor during nanoparticle fabrication was the pH of the chitosan solution, generating significant changes in particle size and polydispersity index. The observed behavior is attributed to the possible excess of sodium tripolyphosphate during synthesis. We added the surfactants poloxamer 188 and polysorbate 80 to evaluate the stability improvement during purification (centrifugation or dialysis). These surfactants decreased coalescence between nanoparticles, especially during purification. The centrifugation increased the zeta potential to 40.8-56.2 mV values, while the dialyzed samples led to smaller particle sizes (152-184 nm). Finally, freeze-drying of the chitosan nanoparticles proceeded using two cryoprotectants, trehalose and sucrose. Both adequately protected the system during the process, and the sugar concentration depended on the purification process. CONCLUSIONS: In Conclusion, we must consider each surfactant's benefits in formulations for selecting the most suitable. Also, it is necessary to do more studies with the molecule to load. At the same time, the use of sucrose and trehalose generates adequate protection against the freeze-drying process, even at a 5% w/v concentration. However, adjusting the percentage concentration by weight must be made to work with the CS-TPP NPs purified by dialysis.

4.
Biomedicines ; 12(1)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38255311

RESUMO

The D1R and D3R receptors functionally and synergistically interact in striatonigral neurons. Dopaminergic denervation turns this interaction antagonistic, which is correlated with a decrement in D3nf isoform and an increment in D3R membranal expression. The mechanisms of such changes in D3R are attributed to the dysregulation of the expression of their isoforms. The cause and mechanism of this phenomenon remain unknown. Dopaminergic denervation produces a decrement in D1R and PKA activity; we propose that the lack of phosphorylation of PTB (regulator of alternative splicing) by PKA produces the dysregulation of D3R splicing and changes D3R functionality. By using in silico analysis, we found that D3R mRNA has motifs for PTB binding and, by RIP, co-precipitates with PTB. Moreover, D1R activation via PKA promotes PTB phosphorylation. Acute and 5-day D1R blockade decreases the expression of D3nf mRNA. The 5-day treatment reduces D3R, D3nf, and PTB protein in the cytoplasm and increases D3R in the membrane and PTB in the nucleus. Finally, the blockade of D1R mimics the effect of dopaminergic denervation in D1R and D3R signaling. Thus, our data indicate that through PKA→PTB, D1R modulates D3R splicing, expression, and signaling, which are altered during D1R blockade or the lack of stimulation in dopaminergic denervation.

5.
Eur J Neurosci ; 59(7): 1441-1459, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38151481

RESUMO

Dopamine D2 receptor (D2R) is expressed in striatopallidal neurons and decreases forskolin-stimulated cyclic adenine monophosphate (cAMP) accumulation and gamma-aminobutyric acid (GABA) release. Dopamine D3 receptor (D3R) mRNA is expressed in a population of striatal D2R-expressing neurons. Also, D3R protein and binding have been reported in the neuropil of globus pallidus. We explore whether D2R and D3R colocalize in striatopallidal terminals and whether D3R modulates the D2R effect on forskolin-stimulated [3H]cAMP accumulation in pallidal synaptosomes and high K+ stimulated-[3H]GABA release in pallidal slices. Previous reports in heterologous systems indicate that calmodulin (CaM) and CaMKII modulate D2R and D3R functions; thus, we study whether this system regulates its functional interaction. D2R immunoprecipitates with CaM, and pretreatment with ophiobolin A or depolarization of synaptosomes with 15 mM of K+ decreases it. Both treatments increase the D2R inhibition of forskolin-stimulated [3H]cAMP accumulation when activated with quinpirole, indicating a negative modulation of CaM on D2R function. Quinpirole also activates D3R, potentiating D2R inhibition of cAMP accumulation in the ophiobolin A-treated synaptosomes. D2R and D3R immunoprecipitate in pallidal synaptosomes and decrease after the kainic acid striatal lesion, indicating the striatal origin of the presynaptic receptors. CaM-kinase II alfa (CaMKIIα) immunoprecipitates with D3R and increases after high K+ depolarization. In the presence of KN62, a CaMKIIα blocker, D3R potentiates D2R effects on cAMP accumulation in depolarized synaptosomes and GABA release in pallidal slices, indicating D3R function regulation by CaMKIIα. Our data indicate that D3R potentiates the D2R effect on cAMP accumulation and GABA release at pallidal terminals, an interaction regulated by the CaM-CaMKIIα system.


Assuntos
Calmodulina , Receptores de Dopamina D3 , Sesterterpenos , Receptores de Dopamina D3/metabolismo , Quimpirol/farmacologia , Calmodulina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Colforsina , Receptores de Dopamina D2/metabolismo , Ácido gama-Aminobutírico/metabolismo
6.
Front Pharmacol ; 14: 1274248, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38027029

RESUMO

Autosomal recessive congenital ichthyoses (ARCI) are a skin pathology due to genetic causes characterized by a variable degree of desquamation, accompanied by erythema. The degree of symptoms is variable, different altered genes are involved, and the symptoms drastically affect patients' quality of life. Topical treatments are a first-choice strategy due to their ease of application and cost; however, enteral administration of retinoids offers greater efficacy, although with certain limitations. Despite the treatment alternatives, ARCI will persist throughout life, disabling people. Therefore, the search for new treatments always remains necessary. Especially repositioning drugs could be a short-term alternative to new affordable treatments for patients. Taking advantage of extensive knowledge of known drugs or biologics could ensure more accessible and possibly lower-cost treatments. This review briefly and concisely addresses possible repositioning strategies with drugs and biologics for ichthyosis.

7.
J Biol Eng ; 17(1): 64, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845737

RESUMO

Hydrogels are three-dimensional structures with specific features that render them useful for biomedical applications, such as tissue engineering scaffolds, drug delivery systems, and wound dressings. In recent years, there has been a significant increase in the search for improved mechanical properties of hydrogels derived from natural products to extend their applications in various fields, and there are different methods to obtain strengthened hydrogels. Cationic guar gum has physicochemical properties that allow it to interact with other polymers and generate hydrogels. This study aimed to develop an ultra-stretchable and self-healing hydrogel, evaluating the influence of adding PolyOX [poly(ethylene oxide)] on the mechanical properties and the interaction with cationic guar gum for potential tissue engineering applications. We found that variations in PolyOX concentrations and pH changes influenced the mechanical properties of cationic guar gum hydrogels. After optimization experiments, we obtained a novel hydrogel, which was semi-crystalline, highly stretchable, and with an extensibility area of approximately 400 cm2, representing a 33-fold increase compared to the hydrogel before being extended. Moreover, the hydrogel presented a recovery of 96.8% after the self-healing process and a viscosity of 153,347 ± 4,662 cP. Therefore, this novel hydrogel exhibited optimal mechanical and chemical properties and could be suitable for a broad range of applications in different fields, such as tissue engineering, drug delivery, or food storage.

8.
Cell Mol Biol (Noisy-le-grand) ; 69(7): 24-27, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37715439

RESUMO

In recent years, increasing interest has been paid to using antibody-based therapies for clinical applications. However, it is unclear whether recombinant antibodies can be combined with other scientific approaches to generate innovative solutions for mitigating severe acute respiratory syndrome coronavirus 2. In this context, the increase in this virus transmission, the number of infected people, and the interaction between social and biological processes have led to a syndemic, exacerbating the public health problem. Here, we argue about recent advances in recombinant antibody strategies and the perspective of using them to face this syndemic. Thus, the most promising methods in sample readiness, potency, and reduction of manufacturing time frame have been highlighted.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Sindemia , Saúde Pública
9.
Animals (Basel) ; 13(18)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37760245

RESUMO

Piscirickettsiosis, the main infectious disease affecting salmon farming in Chile, still has no efficient control measures. Piscirickettsia salmonis is a facultative intracellular bacterium that can survive and replicate within the host macrophages, evading the immune response. Triterpenic saponins obtained from the Quillaja saponaria tree have been widely studied, and have been shown to be immunomodulatory agents, suitable for feed and vaccine applications for veterinary and human uses. The impact of the oral administration of two extracts of Quillaja saponins on the infection of P. salmonis in Salmo salar and the corresponding gene expressions of immunomarkers were studied under three in vivo models. In the intraperitoneal challenge model, the group fed with Quillaja extracts showed lower mortality (29.1% treated vs. 37.5% control). Similar results were obtained in the cohabitation model trial (36.3% vs. 60.0%). In the commercial pilot trial, the results showed a significant reduction of 71.3% in mortality caused by P. salmonis (0.51% vs. 1.78%) and antibiotic use (reduction of 66.6% compared to untreated control). Also, Quillaja extracts significantly modulated the expression of IFN-II and CD8. These results represent evidence supporting the future use of purified Quillaja extracts as a natural non-pharmacological strategy for the prevention and control of P. salmonis infections in salmon.

10.
Cancer Cell Int ; 23(1): 180, 2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37633886

RESUMO

Dietary compounds in cancer prevention have gained significant consideration as a viable method. Indole-3-carbinol (I3C) and 3,3'-diindolylmethane (DIM) are heterocyclic and bioactive chemicals found in cruciferous vegetables like broccoli, cauliflower, cabbage, and brussels sprouts. They are synthesized after glycolysis from the glucosinolate structure. Clinical and preclinical trials have evaluated the pharmacokinetic/pharmacodynamic, effectiveness, antioxidant, cancer-preventing (cervical dysplasia, prostate cancer, breast cancer), and anti-tumor activities of I3C and DIM involved with polyphenolic derivatives created in the digestion showing promising results. However, the exact mechanism by which they exert anti-cancer and apoptosis-inducing properties has yet to be entirely understood. Via this study, we update the existing knowledge of the state of anti-cancer investigation concerning I3C and DIM chemicals. We have also summarized; (i) the recent advancements in the use of I3C/DIM as therapeutic molecules since they represent potentially appealing anti-cancer agents, (ii) the available literature on the I3C and DIM characterization, and the challenges related to pharmacologic properties such as low solubility, and poor bioavailability, (iii) the synthesis and semi-synthetic derivatives, (iv) the mechanism of anti-tumor action in vitro/in vivo, (v) the action in cellular signaling pathways related to the regulation of apoptosis and anoikis as well as the cell cycle progression and cell proliferation such as peroxisome proliferator-activated receptor and PPARγ agonists; SR13668, Akt inhibitor, cyclins regulation, ER-dependent-independent pathways, and their current medical applications, to recognize research opportunities to potentially use these compounds instead chemotherapeutic synthetic drugs.

11.
Healthcare (Basel) ; 11(14)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37510511

RESUMO

Lamellar ichthyosis (LI) is a genodermatosis that injures the structure and function of the skin, affecting the appearance and self-esteem of patients, which may seriously impair their mental health and quality of life. In the present study, we determined anxiety, depression, and suicidal risk levels in patients with LI through the Beck anxiety and depression inventories (BAI and DBI-II, respectively) and the SAD PERSONS scale (SPS). We observed that anxiety, depression, and suicidal ideation were strongly associated with the LI (Cramér's V = 0.429, 0.594, and 0.462, respectively). Furthermore, patients with LI showed a significant increase in the scores of anxiety, depression, and suicidal risk (p = 0.011, <0.001, and 0.001, respectively) compared to individuals without the disease. Additionally, the suicide risk increased even more in patients who presented comorbidity of anxiety and depression than in patients who presented only anxiety or depression (p = 0.02). Similarly, the increase in the BAI scores correlated with the score observed on the SPS. Our results indicate that patients with LI have higher levels of anxiety and depression compared to individuals without the disease, which could be associated with suicidal risk. Therefore, the collaborative involvement of skin and mental health professionals is necessary to manage patients with LI appropriately. We believe that psychiatric studies and individual evaluations must be performed in LI patients to determine a treatment that, in addition to reducing skin symptoms, focuses on reducing the levels of depression and anxiety and improving the quality of life to reduce the risk of suicide.

12.
Front Pharmacol ; 14: 1206334, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37346293

RESUMO

Being the first or second cause of death worldwide, cancer represents the most significant clinical, social, and financial burden of any human illness. Despite recent progresses in cancer diagnosis and management, traditional cancer chemotherapies have shown several adverse side effects and loss of potency due to increased resistance. As a result, one of the current approaches is on with the search of bioactive anticancer compounds from natural sources. Neopeltolide is a marine-derived macrolide isolated from deep-water sponges collected off Jamaica's north coast. Its mechanism of action is still under research but represents a potentially promising novel drug for cancer therapy. In this review, we first illustrate the general structural characterization of neopeltolide, the semi-synthetic derivatives, and current medical applications. In addition, we reviewed its anticancer properties, primarily based on in vitro studies, and the possible clinical trials. Finally, we summarize the recent progress in the mechanism of antitumor action of neopeltolide. According to the information presented, we identified two principal challenges in the research, i) the effective dose which acts neopeltolide as an anticancer compound, and ii) to unequivocally establish the mechanism of action by which the compound exerts its antiproliferative effect.

13.
Pharmaceutics ; 15(6)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37376043

RESUMO

This work proposes a combination of polyethylene glycol 400 (PEG) and trehalose as a surface modification approach to enhance PLGA-based nanoparticles as a drug carrier for neurons. PEG improves nanoparticles' hydrophilicity, and trehalose enhances the nanoparticle's cellular internalization by inducing a more auspicious microenvironment based on inhibiting cell surface receptor denaturation. To optimize the nanoprecipitation process, a central composite design was performed; nanoparticles were adsorbed with PEG and trehalose. PLGA nanoparticles with diameters smaller than 200 nm were produced, and the coating process did not considerably increase their size. Nanoparticles entrapped curcumin, and their release profile was determined. The nanoparticles presented a curcumin entrapment efficiency of over 40%, and coated nanoparticles reached 60% of curcumin release in two weeks. MTT tests and curcumin fluorescence, with confocal imaging, were used to assess nanoparticle cytotoxicity and cell internalization in SH-SY5Y cells. Free curcumin 80 µM depleted the cell survival to 13% at 72 h. Contrariwise, PEG:Trehalose-coated curcumin-loaded and non-loaded nanoparticles preserved cell survival at 76% and 79% under the same conditions, respectively. Cells incubated with 100 µM curcumin or curcumin nanoparticles for 1 h exhibited 13.4% and 14.84% of curcumin's fluorescence, respectively. Moreover, cells exposed to 100 µM curcumin in PEG:Trehalose-coated nanoparticles for 1 h presented 28% fluorescence. In conclusion, PEG:Trehalose-adsorbed nanoparticles smaller than 200 nm exhibited suitable neural cytotoxicity and increased cell internalization proficiency.

14.
Cell Mol Biol (Noisy-le-grand) ; 69(3): 52-63, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37300689

RESUMO

Dysmenorrhea is the combination of cramps and pain associated with the menstrual period, and the symptoms affect at least 30% of women worldwide. Tolerance to symptoms depends on each person's pain threshold; however, dysmenorrhea seriously affects daily activities and chronically reduces the quality of life. Some dysmenorrhea cases even require hospitalization due to unbearable symptoms of severe pain. Dysmenorrhea is an underestimated affectation and remains even in different first-world countries as a taboo subject, promoted by the establishment of an apparent policy of gender equality. A person with primary or secondary dysmenorrhea requires medical assistance in choosing the best treatment and an integral approach. This review intends to demonstrate the impact of dysmenorrhea on quality of life. We describe the pathophysiology of this disorder from a molecular point of view and perform a comprehensive compilation and analysis of the most critical findings in the therapeutic management of dysmenorrhea. Likewise, we propose an interdisciplinary approach to the phenomenon of dysmenorrhea at the cellular level in a concise way and the botanical, pharmacological, and medical applications for its management. Since dysmenorrhea symptoms can vary between individuals, medical treatment cannot be generalized and depends on each patient. Therefore, we hypothesized that a suitable strategy could result from the combination of pharmacological therapy aided by a non-pharmacological approach.


Assuntos
Dismenorreia , Qualidade de Vida , Feminino , Humanos , Dismenorreia/tratamento farmacológico , Medição da Dor
15.
J Biol Eng ; 17(1): 35, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37221599

RESUMO

The freeze-thaw (F/T) method is commonly employed during the processing and handling of drug substances to enhance their chemical and physical stability and obtain pharmaceutical applications such as hydrogels, emulsions, and nanosystems (e.g., supramolecular complexes of cyclodextrins and liposomes). Using F/T in manufacturing hydrogels successfully prevents the need for toxic cross-linking agents; moreover, their use promotes a concentrated product and better stability in emulsions. However, the use of F/T in these applications is limited by their characteristics (e.g., porosity, flexibility, swelling capacity, drug loading, and drug release capacity), which depend on the optimization of process conditions and the kind and ratio of polymers, temperature, time, and the number of cycles that involve high physical stress that could change properties associated to quality attributes. Therefore, is necessary the optimization of F/T conditions and variables. The current research regarding F/T is focused on enhancing the formulations, the process, and the use of this method in pharmaceutical, clinical, and biological areas. The present review aims to discuss different studies related to the impact and effects of the F/T process on the physical, mechanical, and chemical properties (porosity, swelling capacity) of diverse pharmaceutical applications with an emphasis on their formulation properties, the method and variables used, as well as challenges and opportunities in developing. Finally, we review the experimental approach for choosing the standard variables studied in the F/T method applying the systematic methodology of quality by design.

16.
Front Cell Neurosci ; 17: 1125109, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36998270

RESUMO

Diverse neurological symptoms have been reported in patients with SARS-CoV-2 disease (COVID-19), including stroke, ataxia, meningitis, encephalitis, and cognitive impairment. These alterations can cause serious sequelae or death and are associated with the entry of SARS-CoV-2 into the Central Nervous System (CNS). This mini-review discusses the main proposed mechanisms by which SARS-CoV-2 interacts with the blood-brain barrier (BBB) and its involvement in the passage of drugs into the CNS. We performed a search in PubMed with the terms "COVID-19" or "SARS-CoV-2" and "blood-brain barrier injury" or "brain injury" from the year 2019 to 2022. We found proposed evidence that SARS-CoV-2 infects neurovascular cells and increases BBB permeability by increasing the expression of matrix metalloproteinase-9 that degrades type IV collagen in the basement membrane and through activating RhoA, which induces restructuring of the cytoskeleton and alters the integrity of the barrier. The breakdown of the BBB triggers a severe inflammatory response, causing the cytokine storm (release of IL-1ß, IL-6, TNF-α, etc.) characteristic of the severe phase of COVID-19, which includes the recruitment of macrophages and lymphocytes and the activation of astrocytes and microglia. We conclude that the increased permeability of the BBB would allow the passage of drugs that would not reach the brain in a normal physiological state, thus enhancing certain drugs' beneficial or adverse effects. We hope this article will encourage research on the impact of drugs on patients with COVID-19 and recovered patients with sequelae, focusing mainly on possible dose adjustments and changes in pharmacokinetic parameters.

17.
Life (Basel) ; 13(2)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36836894

RESUMO

Lithium is a therapeutic cation used to treat bipolar disorders but also has some important features as an anti-cancer agent. In this review, we provide a general overview of lithium, from its transport into cells, to its innovative administration forms, and based on genomic, transcriptomic, and proteomic data. Lithium formulations such as lithium acetoacetate (LiAcAc), lithium chloride (LiCl), lithium citrate (Li3C6H5O7), and lithium carbonate (Li2CO3) induce apoptosis, autophagy, and inhibition of tumor growth and also participate in the regulation of tumor proliferation, tumor invasion, and metastasis and cell cycle arrest. Moreover, lithium is synergistic with standard cancer therapies, enhancing their anti-tumor effects. In addition, lithium has a neuroprotective role in cancer patients, by improving their quality of life. Interestingly, nano-sized lithium enhances its anti-tumor activities and protects vital organs from the damage caused by lipid peroxidation during tumor development. However, these potential therapeutic activities of lithium depend on various factors, such as the nature and aggressiveness of the tumor, the type of lithium salt, and its form of administration and dosage. Since lithium has been used to treat bipolar disorder, the current study provides an overview of its role in medicine and how this has changed. This review also highlights the importance of this repurposed drug, which appears to have therapeutic cancer potential, and underlines its molecular mechanisms.

18.
Int J Mol Sci ; 25(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38203252

RESUMO

The emergence of bacterial strains displaying resistance to the currently available antibiotics is a critical global concern. These resilient bacteria can form biofilms that play a pivotal role in the failure of bacterial infection treatments as antibiotics struggle to penetrate all biofilm regions. Consequently, eradicating bacteria residing within biofilms becomes considerably more challenging than their planktonic counterparts, leading to persistent and chronic infections. Among various approaches explored, essential oils loaded in nanoparticles based on biopolymers have emerged, promising strategies that enhance bioavailability and biological activities, minimize side effects, and control release through regulated pharmacokinetics. Different available reviews analyze nanosystems and essential oils; however, usually, their main goal is the analysis of their antimicrobial properties, and progress in biofilm combat is rarely discussed, or it is not the primary objective. This review aims to provide a global vision of biofilm conformation and describes mechanisms of action attributed to each EO. Furthermore, we present a comprehensive overview of the latest developments in biopolymeric nanoparticles research, especially in chitosan- and zein-based nanosystems, targeting multidrug-resistant bacteria in both their sessile and biofilm forms, which will help to design precise strategies for combating biofilms.


Assuntos
Nanopartículas , Óleos Voláteis , Antibacterianos/farmacologia , Biofilmes , Disponibilidade Biológica
19.
J Nanobiotechnology ; 20(1): 413, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36109747

RESUMO

Parkinson's disease (PD) significantly affects patients' quality of life and represents a high economic burden for health systems. Given the lack of safe and effective treatments for PD, drug repositioning seeks to offer new medication alternatives, reducing research time and costs compared to the traditional drug development strategy. This review aimed to collect evidence of drugs proposed as candidates to be reused in PD and identify those with the potential to be reformulated into nanocarriers to optimize future repositioning trials. We conducted a detailed search in PubMed, Web of Science, and Scopus from January 2015 at the end of 2021, with the descriptors "Parkinson's disease" and "drug repositioning" or "drug repurposing". We identified 28 drugs as potential candidates, and six of them were found in repositioning clinical trials for PD. However, a limitation of many of these drugs to achieve therapeutic success is their inability to cross the blood-brain barrier (BBB), as is the case with nilotinib, which has shown promising outcomes in clinical trials. We suggest reformulating these drugs in biodegradable nanoparticles (NPs) based on lipids and polymers to perform future trials. As a complementary strategy, we propose functionalizing the NPs surface by adding materials to the surface layer. Among other advantages, functionalization can promote efficient crossing through the BBB and improve the affinity of NPs towards certain brain regions. The main parameters to consider for the design of NPs targeting the central nervous system are highlighted, such as size, PDI, morphology, drug load, and Z potential. Finally, current advances in the use of NPs for Parkinson's disease are cited.


Assuntos
Doença de Parkinson , Reposicionamento de Medicamentos , Humanos , Lipídeos , Nanotecnologia , Doença de Parkinson/tratamento farmacológico , Preparações Farmacêuticas , Polímeros/uso terapêutico , Qualidade de Vida
20.
Carbohydr Polym ; 295: 119864, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35989008

RESUMO

The design of controlled grafting copolymers is critical in synthesizing effective artificial cellular matrices because of their regulatory role in cellular behavior. However, it is unclear whether poly(2-aminoethyl methacrylate) grafted onto chitosan generated by gamma-radiation-induced graft polymerization in different solvents can influence the physicochemical properties and biotech applicability of the copolymer. This work aims to demonstrate for the first time the effect of various solvents on the synthesis, properties, and biological performance of grafted chitosan using the simultaneous irradiation method. The results proved that the solvent is one of the critical factors affecting the properties of the modified polysaccharide. The degree of grafting showed a solvent-dependent profile. Hexane presented utmost importance concerning the degree of grafting. Ethyl acetate showed the best results in grafting extent and human dermal fibroblast growth. These findings indicate that proper solvent selection determines the possible copolymer use for in vitro engineered skin substitute models.


Assuntos
Quitosana , Quitosana/química , Humanos , Metacrilatos , Polimerização , Polímeros/química , Solventes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...